Finger motion sensors for fMRI motor studies.
نویسندگان
چکیده
The kinematics of motor task performance affect brain activity. However, few functional magnetic resonance imaging (fMRI) motor studies have accounted for on-line kinematics because there are currently few MRI-compatible devices to record motor performance. We built a device based on Micro-Electro-Mechanical System (MEMS) gyroscopes that measures the angular velocity of one segment of each of the 10 fingers while a subject performs a finger motor task during fMRI. Finger position, acceleration, and jerk were computed from the angular velocity measurements. The signal-to-noise ratio (SNR) of the MEMS sensors (range: 27.10-34.36 dB) allowed for clear detection of velocity of finger motion during fMRI motor task performance, and showed good stability over time. We demonstrate that use of the MEMS-based device, while negligibly increasing radiofrequency (RF) noise in the scanning environment, did not cause MR image artifacts nor alter fMRI statistical activation maps. Further, we show that signal from the MEMS sensors was not affected by the high static magnetic field (3 T). Increasing the RF power transmitted during fMRI by using a body coil, as compared to a head coil, decreased the sensor's SNR from 30.7 to 24.2 dB, though this loss in SNR did not interfere with the ability to measure velocity of finger motion. We demonstrate the utility of the MEMS-based device in fMRI motor studies through two experiments that examined the relationship between finger movement kinematics and fMRI activation in the healthy and injured brain. On-line acquisition of motor performance during fMRI, through the use of the MEMS-based device, promises to allow for a more detailed understanding of the relationship between movement kinematics and activation in the healthy and injured brain.
منابع مشابه
Quantitative Analysis of Bradykinesia and Rigidity in Parkinson’s Disease
Background In the last decades, several studies showed that wearable sensors, used for assessing Parkinson's disease (PD) motor symptoms and recording their fluctuations, could provide a quantitative and reliable tool for patient's motor performance monitoring. Objective The aim of this study is to make a step forward the capability of quantitatively describing PD motor symptoms. The specific...
متن کاملBrain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کاملAn engineered glove for investigating the neural correlates of finger movements using functional magnetic resonance imaging
Objective measurement of concomitant finger motor performance is recommended for functional magnetic resonance imaging (fMRI) studies investigating brain activity during finger tapping tasks, because performance modality and ability can influence the selection of different neural networks. In this study, we present a novel glove system for quantitative evaluation of finger opposition movements ...
متن کاملEvaluation of Hemodynamic Response Function in Vision and Motor Brain Regions for the Young and Elderly Adults
Introduction: Prior studies comparing Hemodynamic Response Function (HRF) in the young and elderly adults based on fMRI data have reported inconsistent findings for brain vision and motor regions in healthy aging. It is shown that the averaging method employed in all previous works has caused this inconsistency. The averaging is so sensitive to outliers and noise. However, fMRI data are o...
متن کاملModulation of motor and premotor activity during imitation of target-directed actions.
Behavioral studies reveal that imitation performance and the motor system are strongly influenced by the goal of the action to be performed. We used functional magnetic resonance imaging (fMRI) to assess the effect of explicit action goals on neural activity during imitation. Subjects imitated index finger movements in the absence and presence of visible goals (red dots that were reached for by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2006